【数の規則性】難関中学受験過去問解説シリーズ!

※当ブログで扱っている問題については、英俊社さまの赤本をお買い求めください。

クリエートベース公式インスタグラムアカウント

クリエートベース公式YouTubeアカウント

クリエートベース公式TikTokアカウント

本問は、カードを規則に従い、取り除いていく問題です。基本的な手順どおりに、まずは問題文を読み、どのような操作をするのかを正確に把握することからはじまります。

操作した結果には必ず規則が隠されているので、操作が多くなればなるほど、その規則を見つけて適用するというのが出題趣旨になりますね。

(1)について

「小さい数値で試してみようね」という誘導ですね。1回目のあとは2の倍数、2回目のあとは4の倍数となっているので、5回目のあとは2の5乗つまり32の倍数が残ります。

(2)について

(1)より2のN乗の倍数がのこっていくので、本問は「2000までの数の中で最大の2のN乗はいくつですか?」という問題になりかわります。

まとめ

規則性の問題は、

1 問題文に従い、いくつか操作を行ってみる
2 いくつか操作を行ったあとに規則を見つける

以上です。

もし仮に規則に気づかないのであれば、全部書き出すしかありません。全部書き出して、時間内で合わせることができるのであれば、それはそれで立派な能力だと思われますので、武器のひとつと考えてもいいでしょう。

規則の発見に関しては、操作の構造から必然的なものであるのがベストですが、中学受験においては、扱える数式や関数が決まっているため、規則も限られることになります。わからない場合はそれらを参考にしてみるのもいいでしょう。

結局のところ、「規則がわかるまで書き出して試してみる」ということにはなりますが、ほとんどのケースで、書き出し始めると、「あ・・・」みたいにわかってしまうものです。
とりあえず、「小さい数値から試してみる」という姿勢が大切で、それが「できることからやっていき、限界がきたら方針の切り替えを検討する」ということにつながるのでしょう。

しかし、最近のお子さまたちにとっては、このことが一番ハードルが高いというのが残念です。

クリエートベースは、大阪・梅田にて難関中学校への受験対策をおこなっている個別指導塾です。クリエートベースでは、授業形式ではなく、生徒が個別にテキストの問題を解くことを中心とした問題演習方式を採用しております。
「入試当日、確実に合格点をとれるように」を理念として、クリエートベースをご活用いただいた受験生・保護者が望む結果に向けた指導をしております。難関中学校の受験をお子様へとお考えの方は、クリエートベース公式LINE、もしくはお問い合わせフォームからご連絡ください。

関連記事

  1. 【立体の切断による面・頂点・辺の数】難関中学受験過去問解説シリーズ!

  2. SNS動画プロジェクトの趣旨と内容

  3. 【速さと比】難関中学受験過去問解説シリーズ!

  4. 【円周角】難関中学受験過去問解説シリーズ!